Gender Recognition Using Neural Networks and Asr Techniques

نویسندگان

  • Jerzy Sas
  • Aleksander Sas
چکیده

The paper presents the simple technique of speaker gender recognition that uses MFCC features typically applied in automatic speech recognition. Artificial neural network is used as a classifier. The speech signal is first divided into 20 ms frames. For each frame, Mel-Frequency Cepstral Coefficients are extracted and the created feature vector is provided into a neural network classifier, which individually classifies each frame as male or female sample. Finally, the whole utterance is classified by selecting the class, for which the sum of corresponding neural network outputs is greater. The advantage of the method is that it can be easily combined with speech recognition, because both processes (gender recognition and speech recognition) are based on the same features. This way, no additional logic and no extra computational power is needed to extract features necessary for gender recognition. The method was experimentally evaluated using speech samples in English and in Polish. The comparison with other methods described in literature based on other feature extraction methods shows the superiority of the proposed approach, especially in cases where the recognition is carried out in noisy environment or using poor audio equipment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of Color Features and Artificial Neural Networks for In-field Recognition of Saffron Flower

ABSTRACT-Manual harvesting of saffron as a laborious and exhausting job; it not only raises production costs, but also reduces the quality due to contaminations. Saffron quality could be enhanced if automated harvesting is substituted. As the main step towards designing a saffron harvester robot, an appropriate algorithm was developed in this study based on image processing techniques to recogn...

متن کامل

Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature

Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Introduction to speech recognition using neural networks

As an introduction to a session dedicated to neural networks in speech processing, this paper describes the basic problems faced with in automatic speech recognition (ASR). Representation of speech, classi cation problems, speech unit models, training procedures and criteria are discussed. Why and how neural networks lead to challenging results in ASR is explained.

متن کامل

The Munich Feature Enhancement Approach to the 2nd Chime Challenge Using Blstm Recurrent Neural Networks

We present a highly efficient, data-based method for monaural feature enhancement targeted at automatic speech recognition (ASR) in reverberant environments with highly non-stationary noise. Our approach is based on bidirectional Long Short-Term Memory recurrent neural networks trained to map noise corrupted features to clean features. In extensive test runs, enhanced features are evaluated wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013